Bailliang 东莞市百强电源科技有限公司

特点

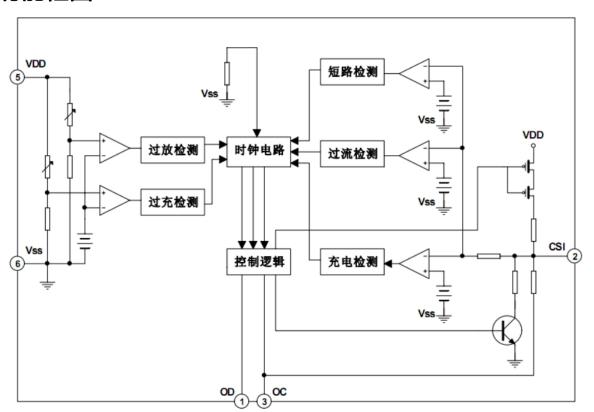
- ●单节锂离子或锂聚合物电池的理想保护电路
- ●高精度的保护电压(过充/过放)检测
- ○高精度过电流(过充/过放)保护检测
- ○带自恢复功能
- ●带短路保护
- O0V充电使能
- ●低电流消耗
- ●工作电压范围广
- ●超小型化的 SOT23-6 封装

应用

- ●单节锂电池的充电、放电保护电路
- ●不适用于无线和射频信号排布及屏蔽太差的产品

概述

DW01S 电路是一款高精度的单节可充电锂电池的过充电和过放电保护电路,它集高精度过电压充电保护、过电压放电保护、过电压放电保护等性能于一身。

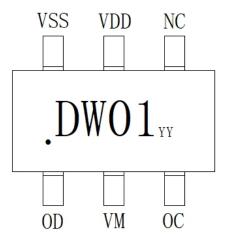

正常状态下,DW01S 的V_{DD} 端电压在过电压充电保护阈值(V_{OC})和过电压放电保护阈值(V_{OD})之间,且其 V_M 检测端电压在充电器检测电压(V_{CHG})与过电流放电保护阈值(V_{EDI})之间,此时 DW01S 的 C_{OUT}端和 D_{OUT}端都输出高电平,分别使外接充电控制N-MOS 管Q2 和放电控制 N-MOS 管Q1 导通。这时,既可以使用充电器对电池充电,也可以通过负载使电池放电。

DW01S 通过检测 V_{DD} 或 V_M端电压(相对于 Vss端)来进行过充/放电保护。当充/放电保护条件发生时,C_{OUT}/D_{OUT} 由高电平变为低电平,使 Q2/Q1 由导通变为截止,从而充/放电过程停止。

DW01S 对每种保护状态都有相应的恢复条件,当恢复条件满足以后,Cour/Dour 由低电平变为高电平,使 Q2/Q1 由截止变为导通,从而进入正常状态。

DW01S 对每种保护/恢复条件都设置了一定的延迟时间,只有在保护/恢复条件持续到相应的时间以后,才进行相应的保护/恢复。如果保护/恢复条件在相应的延迟时间以前消除,则不进入保护/恢复状态。

功能框图



管脚排列

顶视图

SOT-23-6

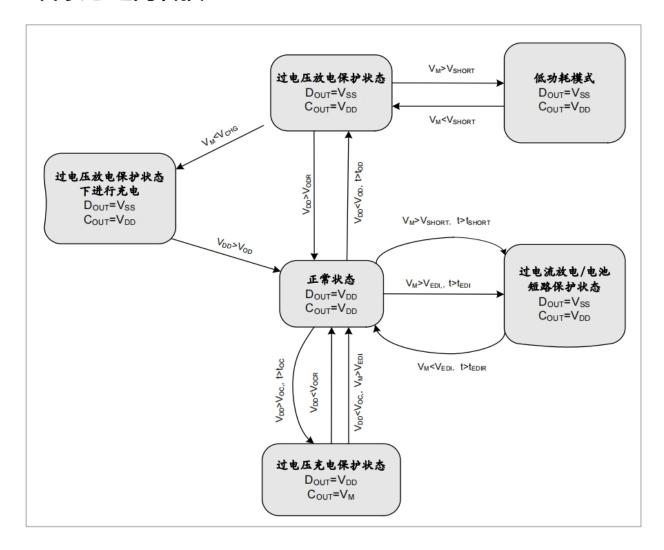
DW01S 管脚排列(不成比例)

* DW01: 字符丝印

* YY: 生产周期

引脚描述

引脚名称	引脚序号	I/O	引脚功能
OD	1	0	放电控制输出端 与外部放电控制 N-MOS 管 Q1 的栅极(G 极)相连。
VM	2	I/O	充/放电电流检测输入端 该引脚通过一个限流电阻(一般为 $1k \Omega$)与外部充电控制 N-MOS管 Q2 的源极(S 极)相连,从而检测充/放电电流在两个 N- MOS 管(Q2 和 Q1)上形成的压降。
ОС	3	0	充电控制输出端 与外部充电控制 N-MOS 管 Q2 的栅极(G 极)相连。
NC	4		悬空
V _{DD}	5	POW	电源输入端 与供电电源(电池)的正极连接,该引脚需用一个 0.1µF的瓷片电容去藕。
Vss	6	POW	电源接地端 与供电电源(电池)的负极相连。



极限参数

参数	符号	参数范围	单位
电源电压	VDD	VSS-0. 3~VSS+8	V
0C 输出管脚电压	VOC	VDD-15~VDD+0. 3	V
OD 输出管脚电压	VOD	VSS-0. 3 [~] VDD+0. 3	V
VM输入管脚电压	VM	VDD+15~VDD+0. 3	V
工作温度	Topr	-40~+85	r
存储温度	Tstg	-40~+125	င

注:"极限参数"是指工作点超出该参数,芯片有可能永久性损坏;工作点长时间接近极限参数,芯片可靠性有可能降低。

各状态之间转换

Bailliang 东莞市百强电源科技有限公司

电气参数

(除非特别注明, 典型值的测试条件为: V_{DD} = 3.6V, T_A = 25℃。标注"◆"的工作温度为: -40℃≤T_A≤85℃)

参数名称	符号	测试条件		最小值	典型值	最大值	单位
工作电压	VDD		٠	1.5		8	V
过充电检测电压	VOCU			4.23	4.28	4.33	V
过充电释放电压	VOCR			4.03	4.08	4.13	V
过充电检测延迟时间	TOC	VDD=3.6V→4.4V			80	200	ms
过放电检测电压	VODL			2.30	2.40	2.50	V
过放电释放电压	VODR			2.90	3.00	3.10	V
过放电检测延迟时间	TOD	VDD=3.6V~2.0V			40	120	ms
过电流放电检测电压	VOI1			0.13	0.16	0.19	V
过电流放电保护延迟时间	TOI1	VDD=3.6V			10	20	ms
过电流复位电阻	Rshort	VDD=3.6V		5	10	20	ΚΩ
充电器检测电压	VCH			-1.1	-0.7	-0.3	V
短路检测电压	VOI2	VDD=3.6V		0.7	1.0	1.3	V
短路保护延迟时间	TOI2	VDD=3.6V			50	120	μs
电源电流	IDD	VDD =3.9V			4.0	6.0	μА
过放状态下电流	IOPED	VDD=2.0V			2.5	4.0	μА
0V充电允许电压阈值	V0V-CHG	电池电压		0.5			V
OC管脚输出高电平电压	Vohl			VDD-0.1	VDD-0.02		V
OC管脚输出低电平电压	Vol1				0.1	0.5	V
OD管脚输出高电平电压	Voh2			VDD-0.1	VDD-0.02		V
OD管脚输出低电平电压	Vol2				0.1	0.5	V

功能说明

● 正常条件

如果VODL<VDD<VOCU,并且VCH<VM<VOII,那么Q1和Q2都开启(见典型应用电路图)。此时充电和放电均可以正常进行。

● 过充电状态

当从正常状态进入充电状态时,可以通过VDD检测到电池电压。当电池电压进入到这充电状态时,VDD 电压大于VOCU,迟延时间超过TOC,Q2关闭。

● 释放过充电状态

进入过记电状态后, 要解除过记电状态, 进入正常状态, 有两种方法。

- 1) 如果电池自我放电,并且VDD<VOCR,Q2开启,返回到正常状态。
- 2) 在移去充电器,连接负载后,如果VOCR<VDD<VOCU,VM>VOI1,Q2开启,返回到正常模式。

● 过放电检测

当由正常状态进入放电状态时,可以通过VDD检测到电池电压。当电池电压进入过放电状态时,VDD电压小于 VODL,迟延时间超过TOD,则Q1关闭。

● 释放断电模式

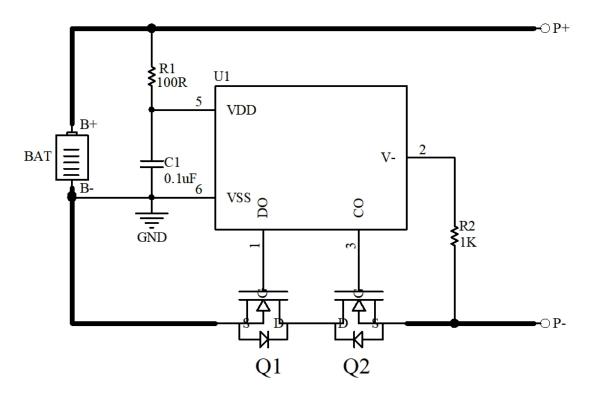
当电池在断电模式时,若连接入一个充电器,并且此时VCH<VM<VOI2, VDD<VODR, Q1仍旧关闭,但是释放断电模式。如果VDD>VODR, Q1开启并返回到正常模式。或者当负载悬空, VDD电压恢复到VDD>VODR, Q1 开启并返回到正常模式(自恢复功能)。

● 充电检测

如果在断电模式有一个充电器连接电池,电压将变为VM<VCH和VDD>VODL。Q1开启并返回到正常模式。

● 过电流/短路电流检测

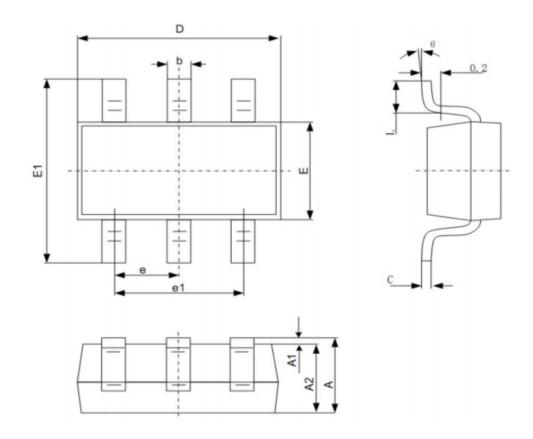
在正常模式下,当放电电流太大时,由VM管脚检测到电压大于VOIX(VIO1或VIO2),并且迟延大于TOIX(TI01或TI02),则代表过电流(短路)状态。Q1关闭,VM通过内部电阻RVMS拉到VSS。


● 释放过电流/短路电流状态

当保护电路保持在过电流/短路电流状态时,移去负载或介于VBAT+和VBAT-之间的阻抗大于 $500K\Omega$,并且 VM<VOII,那么Q1开启,并返回到正常条件。

注: 当电池第一次接上保护电路时,这个电路可能不会进入正常模式,此时无法放电。如果产生这种现象,使 VM 管脚电压等于VSS电压(将VM与VSS短路或连接充电器),就可以进入正常模式。

应用电路


DW01S 典型应用电路图

器件标识	典型值	参数范围	单位
R1	100	100 ~ 470	Ω
R2	1	1 ~ 2	kΩ
C1	0.1	≥ 0.1	μF

注意: R1, R2 不可省略, 且 R1 必须大于或等于 100 欧。

封装尺寸

Cumbal	Dimensions I	n Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.200	0.035	0.047	
A1	0.000	0.150	0.000	0.006	
A2	0.900	1.100	0.035	0.043	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.800	3.020	0.110	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.600	3.000	0.102	0.118	
е	0.950 (BSC)		0.037 (BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	